A média móvel como um filtro A média móvel é frequentemente utilizada para suavização de dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto é realmente um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro permite compará-lo com, por exemplo, windowed-sinc filtros (ver os artigos sobre low-pass, high-pass, band-pass e band-reject filtros para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Das quais as medidas de alisamento por média são um excelente exemplo. Filtros windowed-sinc, por outro lado, são fortes performers no domínio da freqüência. Com equalização no processamento de áudio como um exemplo típico. Há uma comparação mais detalhada de ambos os tipos de filtros no domínio do tempo versus desempenho de domínio de freqüência de filtros. Se você tiver dados para os quais o tempo e o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta um número de versões ponderadas da média móvel que são melhores nisso. A média móvel de comprimento (N) pode ser definida como escrita como é tipicamente implementada, com a amostra de saída corrente como a média das amostras (N) anteriores. Visto como um filtro, a média móvel executa uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1N) (para fazer a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel possa também ser calculada usando um número par de amostras, usar um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) Amostras é exactamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais deslocando-o por um número inteiro de amostras. Domínio Dado que a média móvel é uma convolução com um pulso retangular, a sua resposta de frequência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. É esta resposta de freqüência de sinc que faz com que a média móvel seja um desempenho fraco no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito para suavizar os dados para remover o ruído, enquanto ao mesmo tempo ainda mantém uma rápida resposta passo (Figura 1). Para o típico Ruído Gaussiano Branco Aditivo (AWGN) que é freqüentemente assumido, a média (N) de amostras tem o efeito de aumentar a SNR por um fator de (sqrt N). Como o ruído para as amostras individuais não está correlacionado, não há razão para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, vai se livrar da quantidade máxima de ruído para uma dada nitidez resposta passo. Implementação Porque é um filtro FIR, a média móvel pode ser implementada através de convolução. Ele terá então a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado recursivamente, de uma forma muito eficiente. Segue-se diretamente a partir da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde observamos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O final, enquanto o termo (xn-N1N) é removido desde o início. Nas aplicações práticas, muitas vezes é possível deixar de fora a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro lugar. Esta implementação recursiva será muito mais rápida que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das (N) adições que seriam necessárias para uma implementação direta da definição. Uma coisa a olhar para fora com uma implementação recursiva é que os erros de arredondamento irá acumular. Isso pode ou não pode ser um problema para o aplicativo, mas também implica que essa implementação recursiva realmente funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do simples filtro de média móvel em aplicações de processamento de sinal. Filter Design Tool Este artigo é complementado com uma ferramenta Filter Design. Experimente com diferentes valores para (N) e visualize os filtros resultantes. Experimente agoraEu basicamente tenho uma matriz de valores como este: A matriz acima é simplificada, estou coletando um valor por milissegundo no meu código real e eu preciso processar a saída em um algoritmo que eu escrevi para encontrar o pico mais próximo antes de um ponto no tempo . Minha lógica falha porque no meu exemplo acima, 0.36 é o pico real, mas meu algoritmo olharia para trás e verá o último número 0.25 como o pico, pois há uma diminuição para 0.24 antes dele. O objetivo é tomar esses valores e aplicar um algoritmo para eles que irá suavizar-los um pouco para que eu tenha mais valores lineares. (Ou seja: Id como meus resultados para ser curvy, não jaggedy) Ive foi dito para aplicar um filtro exponencial de média móvel para os meus valores. Como posso fazer isso É muito difícil para mim ler equações matemáticas, eu lidar muito melhor com o código. Como processar valores em minha matriz, aplicando um cálculo exponencial de média móvel para igualá-los out perguntou Feb 8 12 at 20:27 Para calcular uma média móvel exponencial. Você precisa manter algum estado ao redor e você precisa de um parâmetro de ajuste. Isso requer uma pequena classe (supondo que você está usando o Java 5 ou posterior): Instantiate com o parâmetro de decadência desejado (pode ter ajuste deve estar entre 0 e 1) e use a média () para filtrar. Ao ler uma página sobre alguma recorrência matemática, tudo o que você realmente precisa saber ao transformá-lo em código é que os matemáticos gostam de escrever índices em matrizes e seqüências com subscritos. (Eles têm algumas outras notações também, o que não ajuda.) No entanto, o EMA é bastante simples, como você só precisa se lembrar de um antigo valor não arrays estado complicado necessário. Respondeu 8 fevereiro às 20:42 TKKocheran: Muito bonito. Não é bom quando as coisas podem ser simples (se começar com uma nova seqüência, obter um novo averager.) Observe que os primeiros termos na seqüência média saltarão um pouco devido a efeitos de limite, mas você obtém aqueles com outras médias móveis também. No entanto, uma boa vantagem é que você pode envolver a lógica de média móvel para o averager e experimentar sem perturbar o resto do seu programa demais. Ndash Donal Fellows Feb 9 12 em 0:06 Estou tendo dificuldade em entender suas perguntas, mas vou tentar responder de qualquer maneira. 1) Se o seu algoritmo encontrado 0,25 em vez de 0,36, então ele está errado. É errado porque assume um aumento ou uma diminuição monotônica (que está sempre subindo ou sempre indo para baixo). A menos que você média TODOS os seus dados, seus pontos de dados --- como você apresentá-los --- são não-lineares. Se você realmente deseja encontrar o valor máximo entre dois pontos no tempo, corte sua matriz de tmin para tmax e localize o máximo desse subarray. 2) Agora, o conceito de médias móveis é muito simples: imagine que eu tenho a seguinte lista: 1.4, 1.5, 1.4, 1.5, 1.5. Eu posso suavizar isto tomando a média de dois números: 1.45, 1.45, 1.45, 1.5. Observe que o primeiro número é a média de 1,5 e 1,4 (segundo e primeiro números) a segunda (nova lista) é a média de 1,4 e 1,5 (terceira e segunda lista antiga) a terceira (nova lista) a média de 1,5 e 1,4 (Quarto e terceiro), e assim por diante. Eu poderia ter feito o período três ou quatro, ou n. Observe como os dados são muito mais suaves. Uma boa maneira de ver as médias móveis no trabalho é ir ao Google Finance, selecionar um estoque (tente Tesla Motors bastante volátil (TSLA)) e clique em technicals na parte inferior do gráfico. Selecione Média Móvel com um determinado período e Média Mínima exponencial para comparar suas diferenças. A média móvel exponencial é apenas mais uma elaboração disto, mas pondera os dados mais antigos menos do que os novos dados, isto é uma forma de influenciar a suavização em direção às costas. Por favor, leia a entrada da Wikipedia. Então, isso é mais um comentário do que uma resposta, mas a pequena caixa de comentários era apenas pequena. Boa sorte. Se você está tendo problemas com a matemática, você poderia ir com uma média móvel simples, em vez de exponencial. Então a saída que você obtém seria o último x termos dividido por x. Pseudocódigo não testado: Note que você precisará manipular as partes inicial e final dos dados, uma vez que claramente você não consegue média dos últimos 5 termos quando você está no seu 2º ponto de dados. Além disso, há maneiras mais eficientes de calcular essa média móvel (soma sum - mais antigo mais recente), mas isso é para obter o conceito do que está acontecendo em toda. Respondeu 8 de fevereiro às 20: 41Moving filtro médio (filtro MA) Loading. O filtro de média móvel é um filtro simples Low Pass FIR (Finite Impulse Response) comumente usado para alisar uma matriz de datasign amostrada. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que vem à mão para cientistas e engenheiros para filtrar componentes indesejados ruidosos dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a lisura da saída aumenta, enquanto que as transições nítidas nos dados são tornadas cada vez mais sem corte. Isto implica que este filtro tem uma excelente resposta no domínio do tempo mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos computacionais envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com resposta de domínio de freqüência fraca e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta do domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A figura seguinte é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Nós aumentamos as torneiras de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é descrito na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente apagadas (observe a inclinação de cada lado do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação da banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos, um bom desempenho no domínio do tempo resulta em fraco desempenho no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passa-baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados:
No comments:
Post a Comment